Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

نویسندگان

  • Hiromasa Tanaka
  • Kazuya Arashiba
  • Shogo Kuriyama
  • Akira Sasada
  • Kazunari Nakajima
  • Kazunari Yoshizawa
  • Yoshiaki Nishibayashi
چکیده

It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation

Intensive efforts for the transformation of dinitrogen using transition metal-dinitrogen complexes as catalysts under mild reaction conditions have been made. However, limited systems have succeeded in the catalytic formation of ammonia. Here we show that newly designed and prepared dinitrogen-bridged dimolybdenum complexes bearing N-heterocyclic carbene- and phosphine-based PCP-pincer ligands ...

متن کامل

Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum-dinitrogen complexes: unique behavior of ferrocene moiety as redox active site.

A series of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing metallocene-substituted PNP-pincer ligands is synthesized by the reduction of the corresponding monomeric molybdenum-trichloride complexes under 1 atm of molecular dinitrogen. Introduction of ferrocene as a redox-active moiety to the pyridine ring of the PNP-pincer ligand increases the catalytic activity for the formation ...

متن کامل

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalys...

متن کامل

Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex.

A dinitrogen-bridged dimolybdenum-tetrachloride complex is prepared and reduced with Super-Hydride (LiBHEt3) to afford the corresponding dimolybdenum-dinitrogen complex together with the formation of molecular dihydrogen. This reaction proceeds via the ligand exchange of the coordinated dihydrogen generated in situ with molecular dinitrogen.

متن کامل

Chemical nitrogen fixation by using molybdenum and tungsten complexes*

Dinitrogen complex cis-[W(N2)2(PMe2Ph)4] reacts with an excess of acidic dihydrogen complexes such as trans-[RuCl(η-H2)(dppe)2]BF4 (dppe = 1, 2-bis(diphenylphosphino)ethane) at 55 °C under 1 atm of H2 to form ammonia in moderate yield. The reaction is presumed to proceed through nucleophilic attack of the remote nitrogen of the coordinated dinitrogen on the dihydrogen ligand. The coordinated di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014